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A physical 3-vector and dyadic formalism for the treatment of gcneral re1ativist.i~ prohlems is 
derived, by systematic introduction of a proper tetrad field. .*The method is rspecially appropriate 
when there exists a physically or geometrically preferred timelike congruence; all quantities in the 
lornidisrn are then shown to lime immediate physica! intcrprctation as proper lo vx-rshles. A 
complete and nonredundant ret of equations for the analysis of timelike..&: i%&selopcd in 
t.his operational language. Application is made to some simple examples involving local observations, 
and the dircct mrasurcmcnt of thr  Rirmann tcnsor discusscd. 

A. INTRODUCTION 

HE spinor analysis and the tetrad (or vierbein) T formalism were both employed in the 1 9 3 0 ' ~ ~  
in connection with attempts to generalize general 
relativity and to formulate a unified theory of 
electricity and gravitation. The lack of success in 
this particular endeavor, however, led to a sub- 
sequent lack of interest in the formal techniques 
thus opened up. Now, in just the last few years, 
greatly renewed interest in the spinor analysis has 
followed upon its successful application to cases 
of gravitational radiation, within the now-classical 
theory of Einsteinian general relativity.' Such cases 
are characterized by having preferred null con- 
gruences. The tetrad formalism, we believe, can be 
of equally great service, within Einstein theory, 
when appropriately applied to situations having 
preferred timelike congruences. When a tetrad 
formalism is based on a preferred congruence it then 
naturally leads to a three-dimensional dyadic and 
vector formulation which explicitly depends on (and 
expresses) the dimensionality and signature of 
physical space-time. For the many important re- 
sults that depend on this dimensionality and signa- 
ture for their validity, the usual tensor calculus is 
rather an imperfect instrument, tending to prove 
easily only more general results, valid in n dimen- 
sions with arbitrary signatures. 

The dyadic formalism we present in the present 
paper has the advantages of physical interpret- 
ability, mathematical completeness, and wide applica- 
bility. We are a t  considerable pains in several 
sections of the paper to give the physical interpreta- 
tion of all dyadic quantities arising from the formal- 
ism-in almost all cases this is rather easily done, 
for indeed the naturally occurring dyadic quantities 
are found to be those already familiar either from 

* Sponsored by the National Aeronautics and Space Ad- 
ministration under Contract No. NAS7-100. 

E. Newman and R. Penrose, J. Math Phys. 3,566 (1962). 

classical mechanics or from quite simple geometric 
considerations. The result is a much more under- 
standable set of relations, than in the more custom- 
ary 4-tensor formulation of general relativity, 
especially when a physically distinguished con- 
gruence is present. The second advantage is in the 
completeness of the dyadic partial differential equa- 
tions. The more usual tensorial techniques for dis- 
cussing congruences in curved (3 + 1)-dimensional 
manifolds are quite ad hoc, and although the litera- 
ture is replete with many elegant results for special 
cases, a systematic mathematical approach or 
algorithm which overlooks no such results, writes 
no redundant equations, and yet is completely 
general, seems not to be available. Although this 
technical point is difficult to express in an introduc- 
tion, it should become clear in the body of the 
paper. Finally, there promise to be many areas of 
application of the dyadic formalism: a timelike 
congruence which is in some way distinguished or 
preferred occurs in such varied situations as space- 
times supporting matter-energy distributions, cos- 
mological models with preferred galactic distribu- 
tions, and space-times having symmetries and 
isometries descxibed by congruences. The possibility 
of generating new exact solutions of the field equa- 
tions should also be mentioned, especially since the 
dyadic formalism is not wedded to a choice of 
(holonomic) coordinates. The applicability of the 
dyadic formalism to the explicit prediction of exper- 
imental results is noteworthy : the dyadic quantities 
are world scalars, proper components everywhere 
resolved along the orthogonal space and time axes 
of local Lorentz tetrads; they are, that is, precisely 
the raw material of observational physics. We 
demonstrate this last point by presenting equations 
for the differential absolute acceleration and preces- 
sion between adjacent inertially oriented test 
particles, which show in principle how 14 compo- 
nents of the Riemann tensor are locally measurable. 
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The differential precession equation in particular 
seems not to have been given previously in a form 
involving strictly local, proper, observations, and 
uniting the differential Thomas precession of ac- 
celerating particles with the general relativistic Fok- 
ker precession. 

In Sec. B of this paper we discuss tetrad fields 
and the formulation of general relativity in terms 
of such anholonomic reference systems. Section C 
introduces the 3-dyadic formalism, based on a tetrad 
field attached to a preferred timelike congruence, 
and elucidates the physical significance of the dyadic 
quantities. In Sec. D we transcribe the tetrad equa- 
tions into this physical dyadic language. 

In a succeeding paper’ we will demonstrate the 
utility of the dyadic formalism in a consideration 
of the Herglotz-Nother theorem on the motion of 
Born-rigid bodies, which assumes a simplicity other- 
wise entirely concealed. In  addition we will there 
derive new results for Born congruences in curved 
space-times. In future papers, we intend to present 
the dyadic method applied in several other situations 
having, again, preferred timelike congruences. 

B. TETRAD FORMALISM 

1. Tetrad Fields 

The use of auxiliary ennuples in differential 
geometry is of course not new, going back a t  least 
to the work of Ricci. To introduce the 3-dyadic 
treatment of Secs. C and D, we nevertheless must 
briefly recapitulate in a uniform notation much of 
the formalism expounded, for example, in Schouten’ 
and Eisenhart.‘ 

The method of analysis follows upon systematic 
introduction of a tetrad field based on a given time- 
like congruence; we will in fact use four orthonormal 
reference vector fields ,A”, where T = 0 labels a 
timelike vector, and T = 1, 2, 3 are three spacelike 
vectors. The label T is a “Lorentz index” in the 
terminology of Synge,’ and we will reserve Latin 
indices for this purpose. These unit vector fields ,A” 
will trace out four congruences not, in general, 3- 
surface orthogonal. The method is thus equivalent to 
the introduction of convenient, everywhere orthog- 
onal, but anholonomic coordinates, in the termi- 
nology of Schouten.’ 

2 H. D. Wahlqukt and F. B. Estabrook, unpublished. 
3 J. A. Schouten, Ricci-Calculus (Springer-Verlag, Berlin, 

4 L. P. Eisenhart, Riemannian Geometry (Princeton Uni- 

6 J. I,. Synge, Relativity: The General Theory (North- 

1954), 2nd ed. 

versity Press, Princeton, New Jersey, 1926). 

Holland Publishing Company, Amsterdam, 1960). 

By transvection with the contravariant tetrad 
vectors .A” or their covariant duals, ‘A,, we will 
systematically “strangle” all tensor indices of fields 
of interest, thus replacing these indices by Lorentz 
indices, labeling the resulting arrays of world scalars. 
This formalism in many ways bridges the conven- 
tional approach in which tensors are considered as 
arrays of components, and that of the school of 
Cartan, with its perhaps more physical emphasis 
on algebraic quantities in tangent vector spaces.’ 

At any point of space-time, the given timelike 
congruence, and in particular the orthonormal vector 
tetrad there, defines a preferred local Minkowskian 
frame, with respect to which Lorentz indices take 
meaning as labeling proper components, spacelike, 
timelike, and mixed. We will use the special relativ- 
istic Minkowski metric form 7“ = 7,’ = diag( - 1, 1, 
1, 1) to raise and lower Lorentz indices, and so 
to express the tetrad orthonormality relations 

(B.1) r P S  X A, = q”, ,A’ .A, = qr, .  

The metric tensor components are, as in the Cartan 
formalism, simply given by quadratic forms in the 
unit vectors: 

(B.2) 
g’” = IX, J,,  g”’ = ‘A’ J’, 

g: = s: = ‘A’J”. 

In  general, it appears that results which are valid 
only for a certain dimensionality and signature of 
a space, arc much more easily and directly demon- 
strated with such a tetrad formalism. The main 
algebraic inconvenience which will arise is due to 
the lack of commutivity in the process of successive 
“intrinsic” differentiation of scalars (i.e., absolute 
differentiation along the unit vector fields); we 
derive the necessary commutation formulas in 
Sec. B3. 

2. The Object of Anholonomity 
The variation of the tetrad field is described by 

the set of strangled intrinsic derivatives of the unit 
vectors : 

r,,l ,xP ,A’;, J’. 03.3) 
These are essentially thc “rotation coefficients” in- 
troduced by Ricci. It is shown in Sec. B3 that the 
set of scalars I?;;’ can properly be regarded as the 
anholonomic components of the affinity in our 3 + 1 
metric space. From Eq. (B.l) it immediately follows 
that I’,.’ = - rr1.  and indeed there are here exactly 
24 scalar fields. A more elegant set of 24 scalars, 

6 See, for example, A. Lichnerowicz, Elements of Tensor 
Calculus (Methuen and Company, Ltd., London, 1962). 
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however, may be defined using only simple curls 
of the vector fields: 

a:,t = +(‘X,,. - ‘X, , ,>,XP ,A’. 

In oiir metr ic space t h i s  is cquivdcnt tc! 

a,, = iol., - r.,,). 

(B -4) 

(B .5) 

The O,,, are again antisymmetric on the last pair 
of indices: Q,,, = -Qtr. .  For the present case of 
orthonormal unit vectors the Eq. (B.5) can be 
readily solved for the anholonomic affinity compo- 
nents, which demonstrates the equivalence of the 
two sets: 

r,,, = L + o,,~ + L. (B -6) 

It is thus clear that the curls of the tetrad fields 
carry all the metric information, and so knowledge 
of the 40 Christoffel symbols is not now required. 
This is an advantage of an orthonormal tetrad 
formulation, also met with in the spinor calculus, 
where there are just 24 components in the spin 
connection. In  the following we give explicit expres- 
sions for the Riemann tensor components in terms 
of the fields. 

The components Q Y . ,  defined as in Eq. (B.4) are 
termed the “object of anholonomity” by Schouten13 
who introduces them in general, non-Riemannian, 
spaces. The vanishing of the Q:.t everywhere is the 
integrability condition for the unit vectors to be 
gradients of four families of hypersurfaces-hence, 
derivable from ordinary or holonomic coordinates. 
In  our present case, the vanishing of Or,, would 
imply the existence of four everywhere orthogonal, 
equally spaced (hence, Cartesian) coordinate fam- 
ilies, which is to say, the flatness of space-time. 

Intrinsic differentiation of Eq. (B.4) with respect 
to J “  and subsequent complete antisymmetrization 
with respect to Lorentz indices s, t, and p ,  results in 
a set of 16 h t -o rde r  differential identities: 

Q l l a t . p l  2QafpaQltla. 03.7) 
Here the brackets denote complete antisymmetriza- 
tion-in the case of three indices, this involves add- 
ing six terms with appropriate signs according to 
the even or odd permutation of the indices, and 
multiplication by $. These equations are to be 
found in Ref. 3, p. 101; they are in fact integra- 
bility conditions on the 24 world scalar fields V,,, 
allowing them to be derivable from four congruences 
or vector fields .A” in the manner given. 

The 16 integrability conditions are especially 
noteworthy, in that the metric properties of space- 
time nowhere enter in their derivation. There are 
twenty other equations implied in a metric space- 
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time by the form of Eq. (B.5) ; when second covariant 
derivatives are eliminated by antisymmetrization 
(this time on two indices only) components of the 
strangled Riemann tensor Rr*” are introduced. If 

eliminated, by imposing the algebraic symmetries 
of the Riemann tensor in metric 4-space, one finally 
obtains the further independent set: 

A 1  I t ?  --l-A:--- ---A7- ---:++,- -17n n-n+:n bIIC I U  I e l l C b l u L l D  BLt;auy V V l l U U G ~ l  a1c uyu+vI;.II~u*”;L!!j- 

2~(rp)a~!; l )  - ~ ( w ) a  ( r t )  + Q 2 ( a t ) ( r * = )  - - a Q . . a  
Q ( r * ) a Q ( t n )  - aQa(l(t, 

n ( r p ) ( n . l )  

. . e  a Q2;”” - 
+ Q a ( p ( l Q a ) r )  + Qa(t(r  r ) a )  - 3 * t i n  

. . a  z s  . (B.8) 
Here we have used parentheses to denote total 
symmetrization-in the case of two indices, for 
example, this means summation of two terms with 
indices transposed, and multiplication by 3. In  
addition, it has proved algebraically convenient to 
use the symmetrized Riemann tensor (Ref. 5,  p. 54), 

(B.9) 
It is clear that all of Eq. (B.8) has the same sym- 
metries as SStrD: viz., symmetry on the first pair 
of indices, symmetry on the second pair, symmetry 
on the two pairs of indices, and a cyclic symmetry 
on, say, the last three indices. Hence there are 
precisely 20 independent relations in Eq. (B.8). The 
complete set of 36 differential relations for the 
tetrad field, consists of Eqs. (B.7) and (B.8). 

Although their separate origins are obscured by 
the process, it is often convenient to have Eqs. (B.7) 
and (B.8) written together in one set of 36 equations 
involving the usual Riemann tensor, the anholonomic 
affinity components, and their intrinsic derivatives 
(Ref. 4, p. 98): 

s”’” = -i(RarlP + Reptr). 

r l t l a r l . ~ l  = sr 1 r ia  rff, - $rlrar:;a 
(B . lo) 

where indices enclosed between bars are excluded 
from the antisymmetrization brackets. Equation 
(B.lO) is, of course, also the promised direct expres- 
sion of the components of the Riemann tensor in 
terms of the tetrad field. 

+ r l ~ t l a r ~ a r  + +Erin, 

3. Further Relations 
In  Sec. D the dyadic forms of Eqs. (B.7) and 

(B.8) are presented as a general tool for the analysis 
of space-time congruences. We must, however, first 
supplement these equations by commutation form- 
ulas, and by the Bianchi Identities. 

Because of the anholonomity, two successive 
intrinsic derivative indices do not commute-even 
though they are derivatives of world scalars. This 
is easily seen from the definition of intrinsic deriva- 
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tive; it is perhaps more illuminating, however, to 
derive the important resulting commutation formula 
from the general formula for strangulation of co- 
variant derivatives. Consider a tensor Tr: :#. , :~ with 
a single covariant differentiation index; strangle by 
multiplication with 'A, ,A' . .A"; using the ortho- 
normal properties of the tetrad, the resulting expres- 
sion can be written in terms of intrinsic derivatives: 

(T:: :p. . ;J%, * "A' . . .xu = T'" ... U . ,  

+ r . . ' T a . .  .a ... u.. + * * - I'AaT!::q.. - . * * . (B.ll) 
In this scalar expression the set of r;;l plays exactly 
the formal role of an affinity. We emphasize, how- 
ever, that whereas with ordinary holonomic coor- 
dinates an affinity in a Riemann space is symmetric 
on the first two indices (and so in four dimensions has 
40 components), as a result of the orthonormal 
nature of our present anholonomic reference frame 
r;ir is antisymmetric on the last two indices and 
in four dimensions has 24  component^.^ 

Since we may commute covariant derivatives of 
any scalar, T t : : u , .  = 0, it then follows imnied- 
iately upon strangulation according to Eq. (B. l l )  
that the coniniutation formula for intrinsic dif- 
ferentiation is (suppressing all nonderivative Lorentz 
indices) 

T,ir8i = F ~ ; ; I T , ~  = Qar,.T,,. (B.12) 
\Ve conclude this section by recording the in- 

tegrability conditions for the (20) components of 
the Riemann tensor field, allowing them to be 
derivable as in Eq. (B.8). If we are given a Rie- 
mannian metric form, these conditions are of course 
identically satisfied: they are indeed the Identities 
of Bianchi. In our tetrad notation, they follow 
readily upon intrinsic differentiation of Eq. (B.8), 
antisymmetrization, and use of the commutation 
relation Eq. (B.12) to eliminate second derivatives. 
The Bianchi Identities may be most easily written 
in terms of the strangled double-dual of the Riemann 
tensor ; they are 
*RWa ..... t t + 2*Roatirr;;pi + 2*Rvrtiar;;*I = 0, (B.13) 

where 

and enran is the usual four-dimensional permutation 
symbol. As is immediately obvious in the dyadic 
notation, there are exactly 20 independcnt con- 
ditions in Eq. (B.13); these include the four con- 
tracted Bianchi Identities. These 20 equations are 
of great impoitance and utility when deriving the 

7 It  is mnemonicall most convenient to write all the "cor- 
rection" terms in Eq. TB.11) with plus signs, summing always 
on the second index of the anholonomic affinity. 

*RV'ot = &Qr'J~E@'"'Ran,U, cs * 14) 

consequences of special assumptions and synime- 
tries imposed on the gravitational field, and on the 
stress-energy tensor; both of these, in Einstein's 
theory, are comprised in the geometrical Riemann 
tensor. 

C. 3-VECTOR AND 3-DYADIC ALGEBRAIC 
FORMALISM AND INTERPRETATION 

1. Introduction 

In the general tetrad formalism the associated 
congruences are geometrical reference objects more 
or less devoid of intrinsic physical significance. If, 
however, we identify the timelike congruence with 
the world lines of a material continuum, described 
by the velocity 4-vector field ,,A', this is no longer 
the case. The ,,Ar congruence might represent, in 
various instances, the motion of a relativistic fluid, 
a rigid body as defined by Born's constraint condi- 
tion, a proper frame of reference for the performance 
of experiments, or a privileged cosniological matter 
distribution. But regardless of the particulars, it is 
the attitude of considcriiig the tiinelike congruence 
to be a physically givcn object that provides the 
rationale for the 3-dyadic formalism to be presented 
here. A region of space-time in which such a 
congruence exists is endowed with a unique time 
direction a t  each point, and it becomes physically 
reasonable then to dissolve the 4-dimensional union 
of space and time with respect to the congruence. 
Of course, such a decoupling is almost always done 
at some point in any physical problem in relativity 
theory, by selection of a "convenient" set of coor- 
dinates. With the tetrad and dyadic formalisms this 
is done at the outset before further specification 
of the particular system at hand, and without 
prejudice as to the admissibility or desirability of 
any holonomic coordinate system. 

In  Sec. C 2 we introduce a representation of the 
anholonomic affinity, I';;t ,  by splitting its compo- 
nents into independent three-dimensional arrays 
having spacelike Lorentz indices only. The three 
spacelike tetrad vectors used to generate these com- 
ponents are not, of courae, unique. In Sec. C3 it is 
shown that certain restricted transformations be- 
tween sets of thcse auxiliary vectors are the analogs 
of the familiar orthogonal rotations of Cartesian axes 
in 3-space, and that the arrays of proper components 
will transform precisely as conventional h e c t o r  or 
3-dyadic fields under such spatial rotations. A 
detailed discussion of the kinematical and geo- 
metrical significance of the quantities thus intro- 
duced is given in Secs. C4 and C5. 

I 
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2. Three-Dimensional Representation of r,, 
The splitting apart of the components of the 

anholonomic affinity into independent 3-dimensional 
arrays proceeds by segregating those components 
which differ in the number and location of timelike 
indices, here denoted by 0. It should be noted that 
raising or lowering the 0 index changes the sign 
of a quantity. We shall henceforth reserve thc 
letters from the first half of the Latin alphabet 
(a . . . m) to indicate spacelike indices. These take 
on the values 1, 2, 3 only, and the sumination conven- 
tion for such indices i s  limited to this range. Since 
the local spacelike metric qab = 8:, the vertical 
position of these indices does not matter. Paren- 
theses and brackets around indices have the same 
significance as in Sec. B, and cobc  denotes the usual 
three-dimensional permutation symbol. 

With these conventions, the components of r,,f 
having at  least one timelike index may be written: 

roo. = - roao = a,, (C.1) 
- - a b 0  = r o O b  s a b  + e o b c Q c i  (C .2) 

r 0 . b  = - r O b o  %hcWC,  ((3.3) 
where the quantities on the right constitute a three- 
dimensional representation consistent with the anti- 
symmetry of r,., on its last two indices. The array 
of scalars, s o b ,  is defined to be symmetric to the 
interchange of a and b ;  from Eq. (C.2) it follows that 

S a b  E - r ( a b ) O *  (C .4) 
These definitions provide a representation for 15 

of the 24 independent components of the affinity. 
The remaining nine, comprised in the wholly space- 
like robe, describe characteristics of the nonunique 
auxiliary congruences. Again by virtue of the anti- 
symmetry on b and c, we may represent six of these 
quantities by a symmetric array, Nodl and the final 
three by L b  as follows: 

$ e d c b r o b e  N o d  - $ N b b b o d  -k € ; & b L b ,  (c.5) 

where the contraction, Nbb, has been explicitly sub- 
tracted for reasons of formal simplicity later. From 
this equation we further have : 

N . d  - i N P b 8 , d  = & 2 b r a ) b c ,  (C.6) 
(C.7) obe 

N b b  3 c a b e r  , 
and 

Lb E $ r t , b .  (C.8) 
For future reference it is convenient also to catalog 
the components of the object of anholonomity, Q,,,, 
in terms of this representation, uiz., 

Qoo. = - Q0.0 = 4% ((3.9) 

8 0 o b  = - noba t o b c f i ' ,  ((2.10) 
n a b 0  = - 9 a O b  = + [ - s a ,  f Eobc(9' - w e ) ] ,  (c-11) 

adc = - Q a c b  = i ( e d c b N o d  + 2L[,8ala). (c.12) 

3. Vector-Dyadic Notation 
In the representation just developed, the set of 

24 components of either or O,, ,  clearly falls 
into natural three-dimensional subarrays for which a 
vector and dyadic notation would be convenient. 
In such notation the equations involving these 
quantities would preserve the familiar formalism of 
&space rotation covariance which here corresponds 
to the arbitrariness remaining in the selection of 
the auxiliary spacelike tetrad vectors, even when 

is physically given. Since the quantities in ques- 
tion are defined in ternis of the tetrad vectors 
themselves and their derivatives, it is not obvious 
that this program must succeed a t  all; especially 
if we insist that the vector or dyadic character shall 
hold not just at a single event, but throughout 
space-time. 

Accordingly, me now perform an analysis of the 
transformation properties of the arrays under a 
general, four-dimensional, proper orthogonal trans- 
formation of the tetrad fields which leaves oAp fixed. 
We determine the widest group of such transforma- 
tions under which the arrays will have the 3-vector 
and dyadic character at  every point. Not surpris- 
ingly, the set of acceptable transformations is quite 
restricted, in the sense that the parameters of the 
transformation at one event determine the trans- 
formation throughout space-time. For such trans- 
formations, however, we show that the arrays a, 
and L, are polar 3-vectors, say a and L; while 9, 
and w, form axial vectors, P and a. The symmetric 
arrays s , b  and NOb transform as dyadics, S and N, 
although the latter has a pseudocharacter under 
inversions of the spatial tetrad vectors. 

Consider then an orthogonal transformation of 
the three auxiliary spacelike vector fields. We may 
write such a transformation most generally as 

= At, ,A', (C.13) 

where At ,  is a tensor field satisfying 

A,, gar&, = gr.. (C.14) 

In the present case we require that the orthogonal 
tensor field be proper, and that it leave unchanged 
the congruence; it follows that it has an unmoved 
2-flat and can be written in the canonical form' 

8 F. B. Estabrook, California Institute of Technology, 
Pasadena, California, Jet Propulsion Laboratory, Research 
Summary No. 36-14, p. 119 (1962). 
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A, ,  = cme g p ,  + sine (-g)-JEpr.r O ~ c f T  

+ 2 sin'(&e) ( t , ~  - (c.15) 

{' is a unit spacelike four-vector orthogonal to 
together they define the unmoved 2-flat. In  the local 
tetrad frame, we see a simple spatial rotation by 
angle 0 about the tv  direction. Equation (C.14) and 
the invariance of and {' can be verified imme- 
diately by direct computation. Strangling Eq. (C.15) 
we get the familiar 3-space proper rotation matrix 

arrange that the quantities a'' transfornl precisely 
like a 3-vector, and so justify our choice of notation 
for this set of three components. The restriction 
G a b  = 0 amounts to correlating the rotation induced 
by 0 , b  of the three spacelike unit vectors Of a 
fundamental tetrad at a given event, to the rotations 
of all other such tetrads induced at all other events 
along the world line of the congruence through 
the given event, so that o is not intrinsically changed, 
but only locally projected on a different anholonomic 

9 is the unit 3-vector with strangled components 
{. = {, .A'; it points along the axis of the rotation. 
Noting that Oo. = 0, Ooo = -1, we can also write 

3-dyadic Nab o r  N, and the 3-vector La, or L, will 
also transform precisely as the notation suggests 
only under special forms of O a b .  In fact, one finds 

A,. = O., 'A, 'A, = 0.r 'Ax, - O X ,  OX,. (C.17) iVb = N"dO;"O;b + ~~Js0,d,,0;P60b 
Any vector I" orthogonal to ,-,A' may be expanded + +OJd,p~O(oeb)cdO:c (c.24) 

and in either auxiliary tetrad system, 

V' = "v J' = '7 bXI1, (C.18) Lo = LdO;" - +or:.,. (C.25) 

Upon substitution of the explicit form of 0 . b  from 
Eq. (C.16), it is found from equations analogous to 
Eq. (C.23) that the extraneous terms in Eqs. (C.24) 
and ((2.25) can vanish in general if and only if 

and substituting from Eq. (C.13) we can see that 
the components "V transform contragradiently to 
the unit vectors: 

cp = "VO,". (C.19) 

The arrays ofcomponents a,, Q, and S a b  can be 
immediately shown, from their definitions Eqs. (C.l) 
and (C.2), to transform according to Eq. (C.19) 
(or its dyadic generalization, in the case of s o b ) ,  

and so this justifies our use of 3-vector and dyadic 
notation for them: a, P, and S. 

We now consider the change of w,, defined in 
Eq. (C.3), under the transformation of Eq. (C.13). 
From the definition, 

r o h o  = -'%beWc- (C.20) 

If we similarly set 

r o b .  = ax' b x r ; .  O X '  = -eabcGa, (c.21) 

substitution from Eqs. (C.13) and (C.16) leads 
finally to the transformation law 

ij" = CO;" + +Bab*d4*Odo. (C.22) 

Equivalent to this is 

ijo = (/Od" - 85" - sine c" 
- (1 - ewe) (S ~ t ) " ,  (c.23) 

where the superimposed dot means the intrinsic 
derivative in the direction, e.g., B = e,, 
If (and only if) we restrict the orthogonal trans- 
formation tensor At,  to one for which 8 and 
everywhere vanish, which is to say dab = 0, we 

O . b , c  = 0. Combining this with our previous result, 
we can state: o, N, and L transform properly as 
three-dimensional vector and dyadic fields, for those 
orthogonal transformations having the array Oab 
constant everywhere. 

a further orthonormal set "1" may be chosen a t  
every event. Three quite arbitrary auxiliary space- 
like congruences are thus determined. From this 
auxiliary set, however, we usually allow only trans- 
formations to other sets derived from it by choosing 
an arbitrary unit spacelike 3-vector 9, whose compo- 
nents with respect to the spacelike unit vectors are the 
same at every event, and rotating the spacelike set a t  
every event by the same angle 0 about the direction 9. 
Any such transformation thus derives a new set 
of three auxiliary spacelike congruences from the 
first. We call such a new set of auxiliary orthogonal 
congruences &pace rotated with respect to the 
original set. Under such 3-space rotation, a, Ci, S, 
O, N, and L transform in familiar three-dimensional 
orthogonal fashion, and form-invariant equations 
between these quantities can be written in the 
familiar language of the Gibbsian vector analysis. 

In  such equations, I denotes the unit dyadic, 
with components I,,, = 8 a b .  By (tr S)  we mean 
the contraction or trace, S:,. The dot notation for 
inner products is used, and a double dot product 

We have then the followiiig situation: given 
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of two dyadics is equivalent to the trace of their 
inner product. The cross product is defined in the 
usual right-handed way. When a x operates on a 
dyadic, it operates on the nearest index when 

local angular-velocity vector, Q’, by setting 

Q’ = + ( - g ) - V v U r Q J r .  (C.29) 

This can be solved for Q,,, 

expressed in terms of components; e.g., Q,, = ( - ! $ ~ 6 , , r , m 7 ,  (C .3q 
(a xs),b 6 , c d Q ‘ S : b .  (c.26) which demonstrates the equivalence. All these 

canonical tensor quantities are projected into the 
local proper frame; that is, 

(C.31) 

and take the proper 
components of the canonical tensors with respect 

The double product of two dyadics often 
provides a convenient brevity of notation. It is 
used only between symmetric dyadics so that no 
ambiguity of ordering can arise in its definition; viz., 

(C.27) 

a,A’ = Q,J’ = Q,X’ = agvX’ E 0. 

Now, we identify A’ = 
IC d o  (Q 2 s l o b  E e o c d e b f o &  8 * 

I 
.. 

to the local tetrad, using Eq. (B.3) to introduce 
affinity components. Clearly, by Eq. (C.31), trans- 
vection with itself will always give a zero result. 

The result is again a symmetric dyadic having the 
expansion 

QES = Q.S + S - Q  - (trS)Q - (tr Q)S For the acceleration vector, then, we have using . .  

+ [(tr S)(tr 0) - Q : S]I. (C.28) 

We use the 3-vector symbol D for spatial intrinsic 
derivation: thus 4.. becomes Dc$, a gradient; V t , ,  

becomes D-V, a divergence; + ( v , , b  - Vb.c )  when 
multiplied by eobe becomes the curl, D xV; etc. 
Another spatial differential operator, linearly related 
to D, is introduced in Sec. C5; denoted V, this 
operator is convenient in many of our equations, 
and is the triad-strangled operation of covariant 
differentiation in spatial subspaces (when such exist). 
The operations of gradient, divergence and curl with 
the V operator are defined in Sec. C5. 

4. Physical Interpretation of the Dyadic Quantities 
with a physical motion 

imbues many of the components of the anholonomic 
affinity with immediate physical or kinematical 
significance. We first develop the interpretations by 
recalling some definitions met with in the usual 
tensorial description of the kinematics of a relativistic 
continuum. In a sense this procedure is logically 
inverted, but it has the advantage of quickly con- 
necting quantities in the present notation with the 
familiar tensor quantities. A more basic approach 
will follow. 

Let a fluid motion be described by a velocity 
4vector field A’, with XJ’ = -1. From the deriva- 
tives A:;, one resolves canonical sets of first-order 
differential quantities:’ the acceleration vector a, = 
A,; ,A’ ; the (antisymmetric) angular velocity tensor 
a,. = X [ r ; , l  + U [ , A , ~ ;  and the (symmetric) rate- 
of-strain tensor a,, = A(,,;.) + u(,Xv). From the 
angular-velocity tensor can be defined an equivalent 

9 See, for example, J. Ehlers and W. Kundt, in Gravitation: 
An Introduction to Current Research, edited by I,. Witten 
(John Wiley & Sons, Tnc., New York, 1962). 

The identification of 

Eq. (B.3) and Eq. (C.l), 

a, .xP = o ~ , , .  .A’ = roo. = u., (c.32) 

so that our 3-vector a is precisely the local proper 
acceleration of the congruence. Likewise from 

(C .33) P - 1 . bo  7 

(C.2) 
Qfi a x  - Tea I c b O  = %, 

and from (C.10) 

Q,, .A’ *A’ = - Q0.b = C b a c n C ,  (c.34) 

which identifies the 3-vector sl as the local angular 
velocity of the medium. Analyses by Synge,‘ Pirani,” 
and others have made it clear that, l i e  a, this P 
is an absolute entity: the angular velocity of the 
material medium with respect to Weyl’s “compass 
of inertia.” 

The rate-of-strain tensor a,,, gives six proper 
components, all spacelike, and using (C.4), 

U p .  .A’ bh’ = - r ( a b ) O  = s o b ,  (c.35) 

so that S is the local, three-dimensional, rate-of- 
strain dyadic. With this, we have found transcrip- 
tions for all the canonical tensors and will turn to 
the interpretation of o, Eq. ((3.3). 

Projecting the local time derivatives (i.e., the 
intrinsic derivatives in the direction, for which 
we use the superimposed dot notation throughout) 
of the spacelike tetrad vectors themselves, one has 
for the timelike components 

ah, = -,x, = -,ox, up = - a, (C.36) 

from the orthogonality relations alone. And in the 
spatial directions, from Eq. (C.3) we have 

.A, bA’ = r o o b  = e , b c w e *  (C.37) 
lo F. A. E. Pirani, Helv. Phys. Acta Suppl. IV, 198 (1956); 

Acta Phys. Polon. 15, 389 (1956). 
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The vector o thus describes the orthogonal propaga- 
tion of the spacelike auxiliary triads along the ,,A’ 
congruence; kinematically, o is the local angular 
velocity of the auxiliary orthonormal triad with 
respect to the compass of inertia. Conversely, (-0) 

is the angular velocity of a “stable-platforrnll rel- 
ative to the triad. 

From Eqs. (C.36) and (C.37), we may express 
the condition for Fermi-Walker transport, of the 
spacelike triad along a given line of the con- 
gruence simply by setting o = 0 on that line. 
Putting o = 0 everywhere would prescribe the 
introduction of a tetrad field such that the spacelike 
triad attached to each material point represents a 
local, inertially nonrotating reference frame. It is 
an  advantage of the dyadic notation that this condi- 
tion is a 3-vector equation, form invariant under 
3-space rotation. We show in Sec. C5 that it is 
always possible initially to introduce the tetrad field 
according to any such prescription for w. 

Elucidation of the kinematical significance of the 
quantities a, o, and S is alternatively obtained by 
considering an equation for the proper orthogonal 
separation, say p’, of two closely adjacent members 
of the oA” congruence. In the local, proper frame 
p’ will appear as the displacement vector between 
two proximate material particles. Its rate of change 
with local time is given by” 

P’ = (X;. + OAPaI)p’. (C.38) 

Projecting pp onto the tetrad defines locally Cartesian 
spatial coordinates T,, or components of a local 
displacement 3-vector r, where 

7, = p p  ,A#. (C.39) 

The local time derivative of these is found with the 
help of Eq. ((3.38) and (C.ll) to be given by 

?a = 2 4 0 b r b  = [sa, + & c b ( n e  - oc)]rb. (C.40) 

Equation (C.40) is validto first order in the dis- 
placements T,,. These displacement components are 
a Cartesian vector, in the (flat) tangent space a t  
the origin T,  = 0: the Sob, % and w ,  are Cartesian 
components evaluated at r. = 0. Remembering these 
limitations, we may still use dyadic notation : 

(C.41) t f o x r  = S-r + P x r  

from which immediately 

and 
3 D x t  = P - G I  (C.42) 

4(Df + tD) = S. (C.43) 

These equations manifest the local kinematical 

significance of Q, a, and S and basically provide 
interpretations for the canonical tensors as well. 
Since Fermi-Walker transport of the basis vectors 
is accomplished by setting o = 0, the interpretation 
of Q as the local angular velocity of the material 
relative to the compass of inertia is clear. In  the 
general dyadic equations to be written later i t  is 
evident that a particularly convenient choice for 
o is rather to propagate the tetrads so that SL - o = O .  
This alternative is called corotating transport, or 
“body-fixed axes,” since as Eq. (C.42) shows, the 
local reference franie is thereby rotated with respect 
to the compass of inertia so as to follow the physical 
rotation of the neighboring members of the 
congruence. Again, the condition for body-fixed axes 
is form invariant under 3-space rotation. 

Interpretation oE the quantities L and N, which 
express characteristics of the auxiliary congruences, 
is somewhat less evident. I n  fact their significance, 
being more geometrical than physical, emerges most 
clearly in the special circumstance when the given 
timclike congruence conipriscs the orthogonal tra- 
jectories of a family of 3-surfaces immersed in 
space-time. This is discussed in some detail in the 
nest section. First, however, the relationship of L 
and N to the properties of the spacelike con, uruences 
is obtained. 

The first curvature vector of a curvo of the 
congruence generated by is defined by ,Au;, .A’ 
(a not summed), and its components in the local 
tetrad basis are 

( - A p : ,  .Av),Ap = r,,, (a not summed). (C.44) 

Referring to Eq. (C.4) we see that the tinielike 
component is given by the diagonal element of S, 

roo, = So, (a not summed), (C.45) 

which determines the rate of convergence in the 
.h’ direction of the timelike congruence curves ,,A’. 
For T = b # a we have 

roo) = edb.Nd. + Lb (a not summed), (C.46) 

which involves L and only the off-diagonal elements 
of N. If we were to perform a 3-space rotation to 
diagonalize N at a given event, the spacelike conipo- 
nents a t  that point of the first curvature vectors 
of the new set of auxiliary congruences thus obtained 
would be expressed by L alone. In  general, of course, 
such a transformation does not diagonalize N else- 
where and it reappears in Eq. (C.46) a t  other events. 

The geometrical meaning of the diagonal elements 
of N is niore easily expressed in terms of the modified 
dyadic, N - 4(tr N)I. The ath diagonal element 
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of this dyadic gives the rate of “twist” around the 
.A’ direction applied to the triads in propagating 
them in the ,A’ direction itself. In a word, then, 
one might refer to these as the “torsions” of the 
spacelike congruence net. 

5. Conditions on the Auxiliary Congruences. 
The V Operator. 

An orthonormal tetrad field aligned along a 
“given” congruence, generating three orthogonal 
but otherwise arbitrary auxiliary congruences, con- 
stitutes a complex geometrical structure. We wish, 
in this section, to remark about specializations of 
this auxiliary structure, some of which may be 
imposed in general, others only when the preferred 
congruence has special properties. While this dis- 
cussion is not a t  all complete, it should at least 
show that the necessary equations for investigating 
such points are a t  hand in the dyadic notation. 
We first briefly discuss some specializations which 
are always available, then summarize several special 
cases which may occur, and finally, introduce the 
useful vector differential operator, V , suggested by 
one such geometrical subcase. 

The pertinent equations are, in fact, Eqs. (C.22), 
(C.24), and (C.25); for when an aligned but other- 
wise arbitrary tetrad field is initially introduced 
upon a given timelike congruence, the general 
orthogonal transformation Oab in these equations 
can often be selected to give a second, in some way 
special or canonical, tetrad field having the same 
alignment. The dyadic notation then allows the 
further generation (with constant oab) of a family 
of tetrad fields 3-space rotated from this second one, 
as was expounded previously. 

The first example of this, encountered in the 
previous section, is the prescription of Fermi-Walker 
propagated axes everywhere, the condition w = 0. 
That this may  be done in general is clear from inspec- 
tion of Eq. (C.22), when we regard the io as ar- 
bitrarily given initial fields, set w, = 0, and solve 
for the three independent components of d a b  every- 
where. A choice of Oaa on one spacelike 3-surface 
then suffices to determine a solution. We thus 
demonstrate by direct construction a transformation 
leading to a new tetrad field with the desired prop- 
erty. Subsequent %space rotations (with o o b  con- 
stant everywhere) clearly will preserve this property. 

A second example is the imposition of body-fixed 
axes everywhere, Q - w = 0, the justification of 
which follows in exactly similar fashion. 

Another important case is the imposition of the 
set of conditions N = 0, L = 0, o = 0 on a single 
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world line of the congruence. That this may be 
done follows again by construction of the required 
transformation. Given first No*, La, and Gal the 
12 equations in (C.22), (C.24), and (C.25) can now 
be soived ior the tweive partiai derivatives of the 
three scalar fields in Oab on the line. With a choice 
of Oab at one point on the line it may by quadrature 
be suitably det.ermined along and near the line to 
achieve any desired values of N, L, and W. 

An essential point is that while this last can 
always be done along a line or at a point, it cannot 
be done on manifolds of higher dimensions unless 
further integrability conditions are satisfied. Such 
conditions, however, introduce relations among 
the other 12 components of r,.r (viz., a, a, S, 
referring to the timelike congruence) and so require 
the timelike congruence to have special properties. 
A typical situation occurs when one attempts si- 
multaneously to impose Fermi-Walker propagation 
everywhere while also taking N and L to vanish on 
a line: the result is a constraint on the timelike 
congruence along that line. 

We now proceed to summarize some similar cases 
in which partial degrees of integrability, or hol- 
onomity, are imposed on the congruence structure 
throughout space-time. The conditions take the 
form of the global vanishing of certain components 
of the object of anholonomity. The various condi- 
tions are not derived ab initio in the following; 
they are to be found for general spaces in Ref. 3. 
We are primarily interested here in specializing them 
to the case of a (3 + 1)-dimensional metric space 
with orthonormal tetrad vectors and then trans- 
scribing them into dyadic notation. 

We consider first the geometrical situation in 
which one given pair of the four congruences is 
2-forming. That is to say, the two congruences mesh 
together so as to form a (two-parameter) family of 
2-surfaces embedded in the four-dimensional mani- 
fold. The condition for the s congruence and the 
t congruence to be 2-forming is 

W‘ = 0 (r # s, r # t) .  (C.47) 

(We emphasize again that these conditions are 
written for the case of orthonormal tetrads only.) 
For a given pair (s, t )  the inequalities allow only 
two values for the index r ,  and so two independent 
conditions result. There are six possible ways of 
pairing the congrucnces, and if we were to ask that 
all congruence pairs be 2-forming1 we would require 
exactly one-half of the 24 independent components 
of the object of ariholonomity to vanish everywhere. 
In dyadic terms from Eqs. (C.9)-(C.12) the 12 condi- 
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tions given by Eq. (C.47) for this completely 2- 
forming case become : 

P = O ,  o = O ,  

s o b  = 0 (a # b) ,  N,, = 0 (a not summed), (C.48) 

so that, in additionto the vanishing of the two 
angular velocities, S must be diagonal and N off- 
diagonal. The constraints on P and S are of partic- 
ular significance, since they restrict the physical 
congruences 

We may consider, alternatively, the possibility 
that a given set of three congruences is 3-forming. 
This is here equivalent to the condition that the 
fourth congruence be 3-normal; that is, the unit 
vector generating this fourth congruence is every- 
where proportional to the gradient of a scalar func- 
tion, J/, and so orthogonal to the family of 3-dimen- 
sional hypersurfaces, J/ = constant, which essentially 
define a holonomic coordinate in the space. The 
condition for the r congruence to be 3-normal is 

for which this situation may exist. 

Q"' = 0 (s # r ,  t Zr), (C .49) 

which is very similar to (C.47) but differs in the 
effect of the inequalities. Here, when r is given, 
s and t are allowed three values each, but the 
antisymmetry on s and t reduces the number of 
independent, nontrivial conditions to three. If, in 
this case, we ask that a11 four congruences be 3- 
normal, we again require the vanishing of 12 com- 
ponents of the object of anholonomity; clearly, in 
fact, the same 12 as for the case of complete 2- 
forming. The dyadic conditions for complete 3- 
normality, then, are already given by Eq. (C.48). 

A large class of conditions, less restrictive than 
the complete cases covered by (C.48), could be 
considered. In accord with a dyadic approach how- 
ever, which confers a special position exclusively 
on the timelike congruence, only those intermediate 
situations treating the three spacelike congruences 
impartially are of interest. There are four such sub- 
cases; the constraints for them follow immediately 
from Eq. (C.47) and (C.49) and they need only 
to be listed: 
(1) All spacelike CongrueIices are 2-forming with 

Q - o = 0 ,  Sa* = 0 (a # b). (C.50) 
(2) All pairs of spacelike congruences are 2-forming. 

P = 0, No,  = 0 (anotsummed). (C.51) 

s a ,  = 0 (a # b), 

(3) All spacelike congruences are 3-normal. 

Q - o = 0, 

N.. = 0 (a not summed). (C.52) 

(4) The timelike congruence is %normal. 

Jz = 0. (C.53) 

It is worth noting that the 12 components of 
St"' which are not concerned in any of the constraint 
equations presented in Eqs. (C.47)-(C.53) are a, L, 
the diagonal elements of S, and the off-diagonal 

discussions, these are precisely the 12 components 
elements of N. As we have brought out in previous 

of the first curvature vectors of the four congru- 
ences. The entire vanishing of the object of an- 

I 

4 

1 
i 

holonomity is secured, then, by the requirements 
that all four congruences be 3-normal and geodesic. 
As we remarked in Sec. B, this would imply the 
vanishing of the Riemann tensor and the introduc- 
tion of holonomic Minkowski coordinates. 

In  Case 4, Eq. (C.53), the separation of space 
and time is accomplished globally-space-time is a 
sandwich of spacelike 3-manifolds, each normal to 
the (everywhere nonrotating) timelike congruence. 
The Riemannian structure of space-time allows 
invariant measurements in any one of these 3-mani- 
folds; it is, consequently, a Riemannian 3-manifold 
with an induccd intrinsic mctric and a second funda- 
mental form (just S) describing its immersion in the 
4space-the mathematics of this emerge naturally 
in Sec. D2. N and L now express exactly the nine 
components of the anholonomic affinity generated 
by an arbitrary triad field in a Riemannian 3-space. 
Even in the general case, this interpretation of N 
and L has much heuristic value, and completes our 
geometric discussion of these arrays. 

If we pursue this last interpretation by introduc- 
ing a vector operator V to denote triad-strangled 
three-dimensional covariant differentiation as in 
Eq. (B.ll), e.g., 

Vc'ah = DcMab f r , d o M d b  + r c d b M o d j  (c*54) 

we greatly simplify the notation in the dyadic dif- 
ferential equations to be presented in Sec. D. We de- 
note V the three-dimensional covariant diflerentiation 
operator, although of course this interpretation is 
only immediately accessible geonietrically in Case (4) 
(as differentiation in immersed subspaces). Without 
inquiring further here into the geometries of quotient 
subspaces, we merely regard the V operator in the 
general case as a useful notation. From the defining 
Eq. (C.54) we may calculate and tabulate the 
following useful formulas, where V is an arbitrary 
vector field, and M an arbitrary symmetric dyadic 
field : 

vv = DV - [N - +(tr N)I - L x I] xV, (C.55) 
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V * V  = D.V - 2L*V, (C.56) strangled form as 

V XV = D XV - N-V - L xV, (C.57) Erst, = C v S t u  + ( ~ l , [ ~ H t i ,  - ~l . [~Hg~,j  
V X M  = D x M  - M.N - 2N.M- LXM + A R ( ~ l r 1 u ~ l t 1 ,  - ~ l s ~ s ~ l t ~ r ) ,  (D.4) 

H,. = R,. - +ETr,, 

+ L-M x I + a(tr N)M 4- (tr M)N 

+ (N: M)I - +(tr N)(tr M)I, 

- 3 N - M  - L x M  + M x L  + (trN)M 

+ 2(tr M)N + 2(N : M)I - (tr N)(tr M)I, 

where 

(C .58) (D .5) 

R,. = Rf, . , ,  (D.6) 

R = RI,. 03-71 

V x M  - M x V  = D x M  - M x D  - 3M.N the strangled Ricci tensor is 

(C.59) and its scalar contraction is the curvature scalar 
I V.M = D - M  - 3L.M - N k M  + (tr M)L. (C.60) 

D. THE DYADIC PARTIAL DIFFERENTIAL 
EQUATIONS AND INTERPRETATION 

C,.,, is the conformal curvature tensor (strangled) 
of Weyl: it is antidoubledual; all its contractions 

I n  this section we first introduce and discuss two 
alternate splittings of strangled components of the 
Riemann or curvature tensor into dyadic arrays. 

Accordingly as they contain two, one, or no zeros, 
the strangled components of the symmetrized Rie- 
mann tensor in Eq. (B.8) may be gathered into four 
arrays with the property of covariance under 3-space 
rotation : 

P o b  = i f o e f f b d g S e d r o ,  (D * 1) 

We thus describe the 20 components of the curva- 
ture field of general relativity by three symmetric 
dyadics P, Q, B (the last is traceless) and a vector t. 
In Sec. D2, when we write all the dyadic partial 
differential equations, we interpret P in terms of 
the intrinsic curvature of the spacelike 3-manifolds 
of a normal congruence. In Sec. D3 we derive 
several results allowing physical interpretation of 
the differential equations; in particular we there 
interpret Q as giving the tidal acceleration between 
neighboring test particles. An interpretation of B 
and t also appears in Sec. D3-they determine the 
differential (tidal) precession between neighboring 
(inertially oriented) test particles. It should be 
noted that, like N, the dyadic B has a pseudochar- 
acter under 3-space inversion. 

The alternate splitting up of dyadic components 
of the Riemann tensor is suggested by considering 
the canonical resolution of this tensor, in four dimen- 
sions, into three irreducible tensorial parts with the 
same algebraic symmetries." We write this in 

l1 J. Gz6niau  and R. Debever, Bull. Acad. Roy. Belg. C1. 
Sci. 42, 114, 252, 313, 608 (1956). 

ing is the necessary and sufficient condition for the 
metric to be conformally &it. In four dimensions 
C,, t u  has ten independent components; upon resolu- 
tion into proper dyadic arrays, according as the 
Lorentz indices contain one or two zeros, we obtain 
two symmetric dyadics (traceless, so having five 
components each) A and again the B of Eq. (D.3): 

A o b  = Coo01 = - i f o c d E b f p C c d r g j  (D.8) 

Bab = 1 a E . . b C O o c d .  cd (D .9) 
The dyadic A, expressed in terms of the previous 
set, is one-half the traceless sum of P and Q : 

(D.10) 

To complete this alternate splitting, the ten 
components of the Ricci tensor may also be resolved 
into dyadic arrays. For physical reasons we prefer 
to introduce these from the strangled form of the 
Einstein tensor R,. - 4Rg,, which, in Einstein 
theory, is identified with the negative of the non- 
gravitational stress-momentum-energy tensor, T,,.. 
[We have already adopted a unit of length such 
that the velocity of light c = 1; now we adopt 
a unit of mass such that the Newtonian constant 
of gravitation y is (4?r)-'.] In dyadic form we have 
then a symmetric stress dyadic T, a momentum- 
density vector t, and an energydensity scalar p :  

A = $[P + Q - $(tr P + tr Q)I]. 

(D.ll) 

The vector t was introduced previously in Eq. 
(D.3). The local proper system of a fluid is defined 
by the condition that ,,A' be an eigenvector of T,, ": 

Tab = $R,b - iR?.b, t, = $R.ot 
p = -1R 2 00 - i R .  

~ 

J. 1,. S-nae, Proc. London Math. SOC. 43, 376 (1937). 
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T,, 01’ = - P  ox,, (D.12) 

or simply 

t = 0. (D.13) 

In this proper system, p is the proper energy or 
rest-mass density. The condition (D. 13) is invariant 
under 3-space rotation. It is of especial importance 
in formulating many relativistic problems wherc the 
preferred congruence is of both kinematical and 
dynamical significance. 

The dyadic T is, up to its trace, one-half the 
difference of P and Q, 

T = 3[-P + Q - (tr Q)I], (D.14) 

and p is minus onchalf the trace of P. We note 
finally that the curvature scalar R of Eq. (D.7) is 
given in terms of each set by 

(D.15) 

We have then two entirely equivalent sets of 
curvature dyadics-it is difficult to say which is 
to be preferred. In  Einstein’s theory the ten compo- 
nents of the Einstein tensor, T, t, and p ,  express 
the true (or non-self-excited) sources of the total 
gravitational curvature, and the ten components of 
conformal curvature, A and B, express the expected 
ten components of a spin-2 gravitational jield. From 
this point of view the second splitting is the more 
fundamental. Nevertheless the essential nonlinearity 
of Einsteinian theory appears both in the Bianchi 
Identities of Sec. D2, in 16 equations of which 
all these source and field terms are inextricably 
mixed, and again in the operational physical equa- 
tions of test particle motion which are given in 
Sec. D3. In both of these, the more natural splitting 
of the Riemann tensor appears to be that first 
given, into thedyadics P, Q, B, and t, Eqs. (D.l)-(D.3). 

The various possible radiative characters of Ein- 
steinian gravitational fields are expressed, in close 
analogy with those of Maxwell fields, in the alge- 
braically special forms of Cy,,,. The algebraic hier- 
archy for this due to Petrov, Pirani, and Sachsla 
leads, as might be cxpected, to simple canonical 
forms for our A and B. 

Summarizing this briefly, for a Type I1 field, the 
conform tensor has a singly degenerate principal 
null direction, which, strangled in any local proper 
fmme, defines a unit 3-vector of propagation, say 

la A. Z. Petrov, Sci. Trans. Kazan State University 114, 
65 (1954) [Translation by M. Karweit: Astron. Information, 
Trans. No. 29, Jet Propulsion Laboratory, California Insti- 
tute of Technology, Pasadena, California (196311; F. A. E. 
Pirani, Phys. Rev. 105, 1089 (1957); R. IC. Sachs, Z. Phya. 
157, 462 (1960). 

3R = -tr T - p = tr P + tr Q. 

$; take this to be normal to a plane defined by 
otherwise arbitrary but orthogonal unit vectors .6p 

and Q; and then it may be shown that the field 
dyadics must be of the form 

A = (6 - u)GG + (6 + u)M - 26W 

+ c ( ~ ~  + M) + b(w + MI, ( r m )  

B = (E + c)QG + (Z - c)W - 2lW 

+ u(G@ + 64) + b(G$ + M). (D.17) 

Here a, 6, c, E ,  and b are arbitrary scalars under 
3-rotations. G, $, @ are taken to form a right-handed 
orthonormal triad. 

For a Type III algebraically special field the 
conform tensor has a doubly degenerate principal 
null direction-again denoting this by a unit $ we 
find that 

A = u(W - GQ) + c(QQ + M) 
+ b ( W  + *I, (D.18) 

B = c(GG - W) + u(G* + M) 
+ b(tH + m), (D.19) 

which results from Eqs. (D.16), (D.17) on setting 
d = i ! = O .  

For a type-N algebraically special field the con- 
form tensor has but one principal null direction, 
triply degenerate, and the canonical forms siniplify 
further (b  = a = 0) to 

A = c ( t W  + M), (D.20) 

B = c(GG - W). (D.21) 

The quadrupole character of this extreme far zone 
radiative gravitational field is nicely shown by these 
last forms, in conjunction with the test particle 
equations to be given in Sec. D3. Roy and Rhada- 
krishna14 have obtained equivalent forms in a recent 
paper, together with elegant results for gravitational 
and electromagnetic-gravitational shock fronts. They 
characterize the type N field, Eqs. (D.20)-(D.21), 
by saying that the 3-space quadrics associated with 
A and B are equal hyperbolic cylinders, coaxial 
(the $ direction!), with their other principal direc- 
tions inclined a t  45’. The scalar c characterizes the 
gravitational field strength seen by an observer 
whose world line is by itself, a type N conform 
tensor has no nontrivial invariants. All of which 
is nicely analogous to the case of a null electro- 
magnetic field. 
~~ 

14 S. R. Roy and L. Radhakrishnrt, Proc. Roy. Soc. (Lon- 
don) A275, 245 (1963). 
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2. The Dyadic Partial Differential Equations 
We now write the four sets of differential relations 

which must hold between our dyadic fields in full 
generality, the application and analysis of which 
are the essence of this dyadic formalism for general 
relativistic physics. These are, respectively, (a) the 
Differential Identities-16 equations (one scalar 
three vector, one dyadic) arising from Eq. (B.7) 
metric and curvature independent; (b) the Curva- 
ture Equations-20 equations (one vector, three 
dyadic, the first traceless) introducing the Riemann 
tensor components, from Eq. (B.8) ; (c) the Bianchi 
Identities-20 equations (three vector, two dyadic, 

I 
L 

I the first traceless) relating the derivatives of the -. . *  .. . . . .I.. 7 .  
KiPmann onmnnnontc trnm t h P  intPcrranilit.v onnm- 

- v I v I I I u A L I A  """'y"'."YY", "A&& Y l l V  "YVb'UY"*"J ".,--A 

tions Eq. (B.13); and (d) the Commutation Form- 
ulas for anholonomic space and time differentiation, 
special cases of Eq. (B.12). 

(a) Differential Identities 

+V x a  - (Q + O  XQ) = - S . P  + (tr S)Q, 

V-N + V X L  = -2L-N + (tr N)L 

(D.23) 

- 2S.Q + 2w x Q (D.24) 

2L = (V + a).[S*' - (tr S)i] - S* &N*, 

N - +(tr N)I  = (V + a).(Q - 011 
(D.25) 

+ 
- IS*.N* - IN*T.S*T. 2 

X ( V  + a) - $(v + a) xS* 
(D.26) 

To shorten Eqs. (D.25)-(D.26) we have used the 
notation S* = S - (Q - o) x I and N* = N - 
$(tr N)I - L x 1. The superscript T denotes a trans- 
posed dyadic. The trace of Eq. (D.26) may be 
written in addition: 

tr N + 2V. (P  - O) = 2N: S - (tr N)(tr S) 

- 2a.(Q - 0) - 4L.(P - a). (D.27) 

The first two of these equations are remarkably 
simple, curvature-independent, general identities 
satisfied by the proper kinematic observables of 
any timelike congruence. The third, Eq. (D.24), 
expresses integrability conditions on the spatial 
parts, L and N, of the anholonomic affinity. The 
remaining three relate the time derivatives of L and 
N to the properties of the preferred congruence. 

Vas - V(tr S) + V x Q = 2Q x a  - 2t, 

(b) Curvature Equations 

(D.28) 
+(V x s  - s XV) - $(VQ + PV) 

= a&2 + Qa - a.Ql - 9, (D.29) 
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$(V xN - NxV) - 3(VL 4- LV) 

= -N.N + +(trN)N - LL - [%(trN)' 

- $N: N - +L.L]I + E - $(tr E)I, (D.30) 

S + o x s  - s x o  - +(Va + aV) 

= -S .S  + aa - PQ + (6L.Q)I - Q. (D.31) 

The traces of Eqs. (D.30) and (D.31) may be written 
in addition: 

2 V - L  = -a(tr N)' + + N :  N - L-L + tr E, (D.32) 

V - a - t r S = S : S - a * a - 2 Q . Q + t r Q .  (D.33) 

Equation (D.30) may be referred to as the gen- 
eralized equation of Gauss (c.f. Ref. 3, p. 278 and 
Ref. 4, p. 146). It contains only the spatial parts 
of the anholonomic affinity, L and N, and the 
dyadic E, defined as 

E zz - ( P  + + S E S  + PP +oQ + PO). (D.34) 

In our case (4), when Q = 0, the preferred con- 
gruence is 3-space normal, and Eq. (D.30) then com- 
prises the six curvature equations for an imbedded 
Riemannian 3-space. The dyadic E reduces to 

E = - p  - L S x S  a x  (Q = 0), (D.35) 

and is precisely the strangled Einstein %-tensor for 
this imbedded space. The form explicitly reveals 
the dependence of the metric properties of the 
subspace on the four-dimensional curvature compo- 
nents P (which we have accordingly dubbed the 
induced curvature dyadic), and on the second funda- 
mental form S, the rate-of-strain of the timelike 
congruence. Upon taking the covariant divergence 
of Eq. (D.35), the dyadic equations may be used to 
show further that 

V*E = 0 (51 = 0) ,  (D.36) 

a vector equation expressing the three independent 
Bianchi Identities for a Riemannian 3-space. Fi- 
nally, the scalar curvature of the subspace, -2 t r  E, 
is related to the spatial anholonomic affinity by 
Eq. (D.32). 

Equations (D.28 and D.29) may together be 
referred to as the generalized equations of Codazzi 
(cf. Ref. 3, p. 278 and Ref. 4, p. 146) inasmuch 
as, again when Q = 0, they are the usual eight 
partial differential equations for the second funda- 
mental form of the imbedded 3-space. A special 
case of Eq. (D.28) in tensor form has been used by 
Raynerl' in discussing Born-type rigid motions 
(S = 0) in general relativity, (c.f. Ref. 2). 

l6 C. B. Rayner, Compt. Rend. 248, 929 (1959). 
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Equation (D.31) is essentially a kinematic relation 
for the preferred congruence; we return to its 
physical interpretation in Sec. D3. Its trace, Eq. 
(D.33), reduces for incoherent matter (T = 0, t = 0, 
a = 0) to an equation whose tensor equivalent is 
found in Raychaudhuri’s work.16 

The quantities L and N do not appear explicitly 
in eighteen of the thirty-six equations, (D.22) to 
(D.33), althought they still play an implicit role 
in the “covariant” derivative, V. It is often con- 
venient to collect this particular set of equations 
in two nonsymmetric dyadic equations as follows: 

Va - ( S + o x ~  - SXO) + (hb + ~ X Q ) X I  

= S - S  - Q x S  - S x Q  - aa 
+ QQ - (Q*P)I + Q, (D.37) 

and 

VQ + s x v  
= -2aQ + (a.Q)l + B + t x I. (D.38) 

(c) Bianchi Equations 
These follow from Eq. (B.13), but more directly 

can be obtained in dyadic form by differentiation 
of Eqs. (D.22)-(D.33), using the commutation form- 
ulas to be given in the following subsection. 

V * Q  - V(tr 0) - 2(t 4- o x t )  

= -SkB - 3P.B - P X t  + 3S.t 

4- (tr S)t + a-[P - Q - (tr P - tr Q)I], (D.39) 

V.B - V x t  

= S k P  + 2Q-Q + Q - P  - (tr P)Q, (D.40) 

V*P = -SkB - 3P.B 

I - 3P x t  + S-t - (tr S)t, (D.41) 

V X Q -  Q x V  - 2 ( B + o x B -  BXO) 

= ( P + Q ) x a - a x ( P + Q ) - t x S + S x t  

3Qt + 3tP - 2Q.tl- Q X B  + B XP  

- 3s-B - 3B.S + 4(tr S)B + 2s: BI,  (D.42) 

-VXB+ BXV - V t  - t V  + 2 V * t l  

- 2(P + o x P  - Pxo) = 2axB - 2Bxa 

+ 2ta + 2at - 4a.tl - P x P  + P x Q  

- P-S - S-P + 2(tr S)P - 2s: Q. (D.43) 

The trace of Eq. (D.43) is of independent interest: 

I 2 v - t - t r P  = - s : P + s : Q + ( ~ ~ s ) ( ~ ~ P )  

- (tr S)(tr Q) - 4a-t. (D.44) 
la A. Raychaudhuri, Phys. Rev. 98, 1123 (1955). 

The scalar Eq. (D.44) may be joined with a 
vector equation which is the difference of (D.39) 
and (D.41), to give four familiar equations for the 
stress dyadic T, momentum density vector t and 
energy density p :  

(D.45) V.t + [j + (tr S)p] = T : S  - 2a.k 

V*T - [i + o x t  + (trS)t] 

= S- t  + P x t  - Tea + pa. (D.46) 

These are the “contracted Bianchi Identities” in 
dyadic form, commonly interpreted as conservation 
laws for energy and momentum. 

(d) Commutation Formulas 
A large variety of these may readily be inferred 

from Eq. (B.12). As was remarked, it is an in- 
convenience that neither the D nor V operator 
commutes with itself, or with time differentiation. 
We will give here only three which are of frequent 
occurrence in manipulating the intrinsic derivative 
operator D; 4 and V are arbitrary scalar and vector 
fields, respectively. 

(D4)‘ - D($) = ad - SOD& 

+ (Q - o) x D ~ ,  

D x D ~  = 2Q4 + N.D& + L x D ~ ,  

(D.47) 

(D.48) 

(D.49) 

It is convenient however to give a quite complete 
tabulation of such formulas for the 3-space covariant 
operator V ;  here M is an arbitrary symmetric dyadic. 
For the time-space commutation relations we have: 

(D.50) 

D*(D xV) = 2Q.V + N: DV + L - D  xV. 

(V4)’ - V(4) = a4 - S*.V+, 

(vv). - V( ) = a9 - S*.VV 

- [S*T x ( V  + a) + ( V  + a)*(Q - o)l] xV, (D.51) 

(VXM). - VX(M) = a x t h  - S * ~ V M  

4- [(V + a) xS*].M + M.[(V + a) xS*] 

+ [(V + a) xS* - (V  + a).(Q - o)11 
*[M - (tr M)I] - [(V + a) xS*] : MI. (D.52) 

The analogous commutators for ( V  -V). , ( V  x V) . , 
and (V-M)’ follow directly from Eqs. (D.51) and 
(D.52) by contraction and antisymmetrization, and 
so need not be exhibited. We have for convenience 
again introduced the nonsymmetric dyadic S* and 
its transpose s * ~ :  
s* = s - (e - 0) x I, S*T = s + (Q - 0) x I. 

(D.53) 

The commutation relations for spacelike direc- 
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= - E j < ( l  xV) + 2P.{ I X O  + +S*.(l xV)}.’(D.58) 
These general relations appear quite complicated. 
Again, however, when P = 0 and the timelike 
congruence is 3-space normal, we discover simple, 
perspicuous equations. Equations (D.54) and (D.55) 
become the familiar vector identities; the rest reduce 
to dyadic forms of the Ricci identities in a Rie- 
mannian 3-space, with the Einstein dyadic E acting 
for the curvature tensor. 

3. Physical Interpretations 
Let us consider further the relative separation r 

of two closely adjacent particles of the ,,Afi congru- 
ence, Eq. (C.41). This is a local Cartesian vector 
equation, correct to first order in r ;  S, P, and o 
are to be evaluated on one line of the congruence. 
Taking N and L to vanish on the line was tacitly 
necessary for interpretation of Eq. (C.40), for this 
condition implies that the spatial triad system is 
taken locally Cartesian and flat, and we in fact 
required this in order to write Eqs. (C.41)-(C.43), 
where the displacement r is a vector. We may thus 
say that Eq. ((3.41) is not just pointwise valid, 
but rather is valid to first order in a flat metric 
3-space carried along with the local observer. The 
observer is accelerating, and since we do not special- 
ize o along the world line, his reference triad is 
arbitrarily rotating. 

Differentiating Eq. (C.41) with respect to time, 
and substituting S from Eq. (D.31) and h from 
Eq. (D.23), we can eliminate all such quantities 
relating to the whole congruence in favor of the 
local kinematic observables of one particle-observer 
(or of one l i e  of the congruence with its reference 
tetrad), viz., a and -a. These are respectively the 
vectorial reading of a linear accelerometer and the 
vector angular velocity of a (gyroscopically sta- 
bilized, or untorqued) “stable-platform.” 

We find as a result an equation for the observed 
spatial variation of a :  

a, = a + r - V a  = a( l  - a-r) + i: + 20 x t  

+ o x (O xr) + 6 x r  + Q-r. (D.59) 

This is a quasi-Newtonian equation for a,, the 
accelerometer reading a t  the adjacent point r, in 
terms of the accelerometer reading a a t  the origin 
of spatial coordinates and the relative acceleration i. 
It is entirely written in local, proper or “operational” 
terms, and is immediately useful for the analysis 
of experiments. The usual centrifugal, Coriolis, and 
angular acceleration terms will be recognized. A 
special relativistic clock rate correction factor 
(1 - a-r/c2)-where c2 = 1 in our units-is but 
another manifestation of the “red shift” predicted 
by special relativity for accelerating frames and 
recently verified in local terrestrial experiments using 
the Mossbauer effect (compare Ref. 5, p. 411). 

The term Q- r  is the general relativistic term 
expressing the tidal effect of the curvature tensor on 
the relative acceleration. When Q is written in terms 
of our second set of dyadics this term becomes 

Q- r  = [A + T + g ( p  - 2 tr T)I].r. (D.60) 

In this form the contributions of the “source” and 
“field” parts of the Riemann tensor are separately 
revealed: for source-free regions one has just Amr. 
If the test particles are free (a = a, = 0) ,  Equation 
(D.59) reduces to the equation of geodesic deviation 
of Synge.’ If on the other hand they are parts of 
a stress system obeying Hooke’s law and the ab- 
solute accelerations a, a, are related to the stresses, 
one obtains the dynamical equations of Weber.” 
The dyadic partial differential equations, such as 
those for V a  and VP, Eqs. (D.37) and (D.38), 
provide a generally valid instrument, expressed in 
an operational language, for the treatment of 
similar problems on the motion of macroscopic, 
continuous “test” bodies. 

A similar equation may be found for the stable- 
platform angular velocity -a1, a t  r, in terms of 
that a t  the origin, -a. From Eqs. (D.28), (D.29), 
(D.25), and (D.26) and again (C.41), and setting 
N = 0 and L = 0, we obtain 

- o, 3 -o + r-V(-o) = (-0)(1 - a-r) 
+ a x (i + o xr) - B-r + t xr. (D.61) 

Here all terms leading to a difference of - a, and 
- o are nonclassical, of special or general relativistic 
origin. We again find a clock rate correction factor. 
The second special relativistic term is the differential 
Thomas precession. These two terms combined can 
be derived from the usual Thomas precession form- 
ula, in the differential limit, if care is taken to 
express all precession rates in terms of local proper 

17 J. Weber, General Relativity and Gravitational Waves 
(Interscience Publishers, Inc., New York, 1961), Chap. 8. 
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times. In  the last two terms we again note separate 
contributions from the field and source parts of the 
Riemann tensor: a “spin” term -B-r, arising from 
the conformal tensor, and an “orbital” term t x r, 
from the Einstein tensor. For geodesic observers, 
only these general relativistic terms will remain; 
they may be denoted the differential Fokker preces- 
sion.“ 

Equations (D.59) and (D.61) show how in prin- 
ciple the fourteen Riemann components Q, 8, and 
t may be experimentally determined from local 
differential kinematical measurements near, and on, 
one arbitrarily given timelike world line. As was 
remarked previously, the remaining six components, 
in the induced curvature dyadic P, are in principle 
determinable from local spatial surveying in a triad 
system, Eq. (D.30) ; this means that their geometric 
effects will be second order in the spatial displace- 
ment components r,. An experimental approach to 
the measurement of P would no doubt instead 
involve kinematical experiments on Q, B, and t as 
above, but made by two or more point-observers 
in rapid relative motion. These complications will 
not arise in sourcc-free regions, however: for express- 
ing P by 

(D.62) 

and recalling Eq. (D.60), we clearly have in this 
case P = Q = A. 

As a final illustration we obtain an equation for 
the quasi-Newtonian “gravitational field” of a non- 
rotating (Q = 0) static distribution of matter with 
proper energy density p and stress dyadic T. The 
matter is represented by a congruence ,,A* defined 
by the condition t = 0, and everywhere nonrotating 
(O = 0)  auxiliary triads areintroduced. A static 
distribution is defined operationally by the condition 
that in this tetrad system the local time derivative 
of every kinematic observable must vanish. We, of 
course, already have h = cb = 0, but specifically 
impose the further conditions = 0 and S = 0, 
the latter being required to ensure that all relative 
displacements r are time independent. 

When all these conditions (Q = o = t = A = S = 0) 
are invoked, Eqs. (D.25) and (D.26) show that 
1, = N = 0, and the other dyadic equations then 
directly yield the same result for the local time 
derivative of every remaining quantity. For instance, 
the scalar Bianchi identity Eq. (D.45) has the 
immediate consequence, p = 0. 

We now imagine a population of proper Newtonian 
A. D. Fokker, Proc. Roy. Acad. (Amsterdam) 23, 729 

P = A - T + %(tr T - 2 p ) l  

(1920). 

observers, each of whom prefers to ascribe his 
kinematic observations not to his own absolute 
acceleration a, but rather to a “gravitational field 
of force” with intensity F = -a. The “gravitational 
field equation” is then just Eq. (D.33) which, under 
the imposed conditions, may be written 

F*F, (D.63) 

where we have put -F for a; substituted for t r  Q 
its equivalent, p - tr T; restored dimensional 
factors; and defined a proper mass density, pM p/c2.  

When = 0 it follows from Eq. (D.23) that 
V x a  = 0, and this, together with a = 0, is suffi- 
cient to permit expressing F as the gradient of a 
time-independent scalar : 

F = -V9, 8, = 0. (D.64) 
Equation (D.63) will then take the form 

1 1 
VZ+ = 4-(p, - z t r  T) - 3 (VI$)*. (D.65) 

For the prescribed conditions this is an exact equa- 
tion reducing to Poisson’s equation in the non- 
relativistic approximation. If we also rewrite Eq. 
(D.37) in these terms and for these conditions, we 
find the following expressions for t,he tidal accelera- 
tion dyadic Q: 

1 
c2 

Q = -VF +-FF 

= VV9 + $ (Vd(V9j. (D.66) 

Note added in proof: I n  a private communication, 
Dr. F. A. E. Pirani has very kindly called our atten- 
tion to the “method of projection” of Carlo Cat- 
taneo.” We were completely unaware of this work, 
whose relation to the present formulation should 
be noted. Our operator V, denoted by us the opera- 
tor of “spatial covariant differentiation,” is precisely 
the covariant operator of “transverse differentiation” 
of Cattaneo, strangled. Those of our equations such 
as (D.37) and (D.38) not explicitly involving N 
and L can of course be immediately “unstrsngled” 
by multiplication with ,JF, ,,A’, ctc., to give covariant 
equations not depending on a choice of auxiliary 
congruences; such equations are thus derivable by 
the method of projection. On the other hand, our 
equations (D.24), (D.25), (D.26), and (D.30) ex- 
plicitly contain N and L, and seem to be much less 
accessible in covariant language, while vital for the 
completeness of the total set. 

See, for example, C. Cattaneo, Compt. Rend. 248, 197 
(1959); I. Cattaneo-Gasparini, Compt. Rend. 252, 3723 
(1961). 


